
CodeWorrior Tips

Table of Contents
Import Net Yaroze GNU GCC project into CodeWarrior..2

CodeWarrior debugger...10
PCSXR...13
Yarexe..13

CodeWorrior Debugging Tips..14
CodeWorrior Defines Tips..16

Import Net Yaroze GNU GCC project into CodeWarrior

Example GNU NY project:

Start CodeWarrior’s IDE and select New Project...

Select NetYarozeC, I like keeping CW files separate to the GNU code base, so I tick ‘Create
Folder’, if you don’t, don’t tick it. Click OK to continue.

Go to the folder of the Yaroze GNU GCC project, the file name is the folder (if you ticked create
fold) which CW will create it’s files in, CW is simple and clear, and this “CW” folder is used here
on in.

If you have multiple projects, call it something meaningful, but DON’T USE SPACES ETC!

You’ll get the following windows: left messages of the files and settings automatically applied, the
right screen is the project tree with some files automatically created.

In the folder ‘Headers (not Required)’ it automatically creates 2 header files for each target with
debug defines… but these are “not required” to be used.

CW will create a default main.c in the CW Source folder, which isn’t needed and has to be remove
from the tree.

Now go back to the file explorer and enter the new CW created folder you should see the CW.mcp
file (Metrowork Codewarrior Project) and and other files…. delete main.c from there also.

Now go back to the NY GNU GCC project folder to drag and drop source files.

Select all source files (C/CPP and header files only) and drag and drop them to the Source folder in
the CW Tree window.

You can separate source and
header files by dropping/moving
C/CPP files in the source and .h
files in the Headers folder.

You can change the “Headers
(not Required)” by double
clicking it.

When you add files, you will be asked what targets are the files for, typically you want all the
source file for both Debug and Optimized (release) targets, click ok.

For more information on using CW, read the docs… but a quick run down:

1: Target settings – this is where you configure the compiler (C/C++) and linker options
(Address screen below)

Change the “Code Address” field with the link address from the makefile, needs to be done for all
the targets.

If you want to debug the target, ie optimized, you must tick Generate DWARF info.
It wont let you launch the debugger without it.

If you use software floats, you must click, Project → add file →(Library files)
Go to folder: C:\Program Files\Metrowerks\CodeWarrior\Net Yaroze Support\Lib
Select file: Math-ISA1-noFPU-LE.lib
Select all targets.

2: Synchronize modification dates
Marks (with red tick) source files on the tree which have changed, ie via an external editor.
But clicking make automatically builds changed files and their associated files.

3: Make – Builds current target
(Left) CTRL – (minus key) to make clean.

4: Run/Debug
This will send the debug executable to the playstation via it’s internal transfer.
But before you can debug anything, you have to enable it first!

Loading assets before debugging.

Create an executable via yarexe (see below) that exits to siocons before initialising any data, ie
before loading TIM's into VRAM etc, the executable will automatically have your data in the
correct places in RAM. This is faster and better then sending individual items ie: via CodeWarrior,
siocons or unirom/nops.bat etc, then after your program has started siocons, start CodeWarrior’s
debugger as normal for debugging.
IE:

#ifdef CODEWORRIOR_DEBUGGING
// load exe via unirom/nops and exit to siocons, leaving assets untouched
// then launch in CW debugger

#ifndef __MWERKS__ // if built gcc, load and exit into siocons
exit_to_siocons();

#endif // CodeWarrior for NY will continue as normal

#endif

This executable can be burnt to a CDR or sent via unirom and nops.bat, the point is, use the
executable to load your assets then exit into siocons, exiting and load siocons will not (generally)
effect the existing RAM, then start the CodeWorrior debugger, this is a lot quicker and easier!!!!

See exit_to_siocons below, for an example on out to exit to siocons.

CodeWarrior debugger

It’s that old late 90’s window style ‘free-form’ or ‘multi-window’ mode, and it can not be changed
to a a normal Single-Window Mode, and it doesn’t remember your layout!
I recommend returning to the desktop (minimise all apps) and clicking back to the debugger, it’s
less confusing.

CW debugger works exclusively in Remote Debug (rdb) mode, so it requires the CDROM to be
running in the background (at least at the start).
If you haven’t already loaded your assets into RAM, run menu:
Playstation → Download Data from Batch File:

This loader wants a *.sio file where as the CW PSComUtil defaults to a *.dat, but it’s the same
thing, an AUTO batch file that loads the assets, the load executable and go statements are ignored.

There is no scroll wheel mouse support on debug windows!
To circumvent this from C:\misc you can install the freeware Fly Wheel app, I recommend
removing it from the start → all programs → startup and manually starting it when debugging, it’s
buggy but works, but your mileage may vary.

Step over: S + CTRL
Step into: T + CTRL
Step out: U+ CTRL
Run: R+ CTRL

5: Project inspector
Here pick some options assisted to each file and pick which target each file is used in.

Targets can be used to work on new/old code base for example, you can create new targets via:
Project → Create New Target...

CodeWorrior executable files

Each target produces the following files:

.pxe – CW executable format.

.pse – CW debugging format.

Using CW Executables in
emulators

CodeWarrior uses the same siocons auto batch loading text file.

Where the common AUTO file loads the GNU GCC executable like:
local load main

This line is replaced with your CW PXE file (not the PSE debugging format):
local load CW\NYopt.pxe

Where CW is the project name, with no spaces etc.
The CW auto file ie: cw.auto can be used with PCSXR and emulators that can load PS-X
Executables.

PCSXR
This PCSXR build has been configured to load Net Yaroze scripts, including CodeWorrior
executables.

This version of PCSXR is a lot older and tends to be slow and buggy, it has no TTY output but
executable has access to the CDROM, Command line:

pcsxr.exe -yaroze “FULLPATH\AUTO” (must have quotes around full path and auto file)

Example:
pcsxr. -yaroze "C:\Documents and Settings\NetYaroze\Desktop\NY-demos\blow-dataman\cw.auto"

Or via GUI via: File → Run →Net Yaroze script...

Yarexe

Combines, libps.exe with assets and CW executable into a single PS-X executable.

This can then be used with any emulator (or sent to hardware or burnt to a CDROM).
Run:
yarexe CW.AUTO

This will output: psx.exe

It can then be loaded in no$psx, however, there’s no access to the NY boot CDROM.

If you are sending this file to a playstation, (ie via nops) it can be compressed (for a lot faster
transfer speeds!) by:
upx –best psx.exe

Both apps create PS-X executables from the CW pxe file, PCSXR automatically and yarexe will
leave it with the -v option.

CodeWorrior Code Tips

exit_to_siocons

void exit_to_siocons(void)
{
 /* Matt Verran's code from
 Subject: loading an exe and using Exec()
 Date: Sun, 15 Apr 2001 10:23:17 +0100
 From: Matt Verran
 Newsgroups: scee.yaroze.freetalk.english
 */

 if(CdSearchFile(0, "\\DTL_S30.35;1") == 0)
 {
 printf("\n DTL_S30.35;1 not found \n");
 }
 else
 {
 struct EXEC *exec_struct;
 s32 result;

 printf("\n DTL_S30.35;1 found, de init \n");

 ResetGraph(3);

 printf("\n Loading DTL_S30.35;1\n");

 exec_struct = CdReadExec("\\DTL_S30.35;1");
 result = CdReadSync(0, 0);

 printf("\n found loaded, result: %d \n\n", result);

 if (result==0)
 {

 printf("\n executing \n");
 EnterCriticalSection();
 Exec(exec_struct, 0, 0);
 ExitCriticalSection();
 }
 }

}

CodeWorrior Defines

#ifdef __MWERKS__ // CodeWarrior for NY precompiler define
#define __FUNCTION__ "CodeWorrior does not support the __FUNCTION__ macro!"
#endif // CodeWarrior for NY

	Import Net Yaroze GNU GCC project into CodeWarrior
	Loading assets before debugging.
	CodeWarrior debugger
	CodeWorrior executable files
	Using CW Executables in emulators
	PCSXR

	Yarexe
	CodeWorrior Code Tips
	exit_to_siocons
	CodeWorrior Defines

